
pychemcurv
Release 2022.3.17

Germain Salvato Vallverdu, Julia Sabalot-cuzzubbo, Dider Bégué, Jacky Cresson

Feb 29, 2024

INTRODUCTION

1 Features 3

2 Citing pychemcurv 5

3 Installation 7
3.1 Installation from PyPi . 7
3.2 Installation from source . 7
3.3 Install in developper mode . 8

4 Run the web application 9
4.1 Common error on local execution . 9

5 Licence and contact 11

6 Core classes 13
6.1 Vertex classes . 13
6.2 POAV: Pi-Orbital Axis Vector . 17

7 pychemcurv.analysis 21
7.1 CurvatureAnalyzer class . 21

8 pychemcurv.vis 23
8.1 CurvatureViewer class . 24

9 pychemcurv.geometry 27

10 Introduction 29
10.1 Features . 29
10.2 Citing pychemcurv . 30
10.3 Installation . 30
10.4 Run the web application . 31
10.5 Licence and contact . 32

Bibliography 33

Python Module Index 35

Index 37

i

ii

pychemcurv, Release 2022.3.17

Table of contents

• Introduction

– Features

– Citing pychemcurv

– Installation

∗ Installation from PyPi

∗ Installation from source

∗ Install in developper mode

– Run the web application

∗ Common error on local execution

– Licence and contact

pychemcurv is a python package for structural analyzes of molecular systems or solid state materials focusing on the
local curvature at an atomic scale. The local curvature is then used to compute the hybridization of molecular orbitals.

The main features of the library are available from a Plotly/Dash web application available here: pychem-
curv.onrender.com/. The web-app allows to upload simple xyz files and compute the local geometrical properties
and the hybridization properties. The application source code is available in a separate repository at pychemcurv-app.

Fig. 1: Pyramidalization angle of a 𝐶28 fullerene mapped on the structure with a colorscale.

INTRODUCTION 1

https://plot.ly/dash/
https://pychemcurv.onrender.com
https://pychemcurv.onrender.com
https://github.com/gVallverdu/pychemcurv-app

pychemcurv, Release 2022.3.17

2 INTRODUCTION

CHAPTER

ONE

FEATURES

Pychemcurv is divided in two parts. The first one is a standard python package which provides two main classes to
compute the local curvature at the atomic scale and the hybridization of a given atom. Second, a Plotly/Dash web
application is provided in order to perform a geometrical and electronic analyzes on molecules or materials.

The web application is available at pychemcurv.onrender.com/. The web-app allows to upload simple xyz files and
compute the local geometrical properties and the hybridization properties. The application source code is available in
a separate repository at pychemcurv-app.

Some jupyter notebooks are provided in the notebooks/ folder and present use cases of the classes implemented in
this package. You can access to these notebooks online with binder.

3

https://plot.ly/dash/
https://pychemcurv.onrender.com
https://github.com/gVallverdu/pychemcurv-app
https://mybinder.org/
https://mybinder.org/v2/gh/gVallverdu/pychemcurv.git/2020.6.3

pychemcurv, Release 2022.3.17

4 Chapter 1. Features

CHAPTER

TWO

CITING PYCHEMCURV

Please, consider to cite the following papers when using either the pychemcurv library or the web application.

Julia Sabalot-Cuzzubbo, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Relating the molecular topology
and local geometry: Haddon’s pyramidalization angle and the Gaussian curvature, J. Chem. Phys. 152, 244310
(2020).

Julia Sabalot-Cuzzubbo, N. Cresson, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Haddon’s POAV2
vs POAV theory for non-planar molecules, J. Chem. Phys. 159, 174109 (2023).

5

https://aip.scitation.org/doi/10.1063/5.0008368
https://aip.scitation.org/doi/10.1063/5.0170800

pychemcurv, Release 2022.3.17

6 Chapter 2. Citing pychemcurv

CHAPTER

THREE

INSTALLATION

3.1 Installation from PyPi

From November 2023, pychemcurv is available on pypi. You can install it directly using pip.

python -m pip install pychemcurv

3.2 Installation from source

Before installing pychemcurv it is recommanded to create a virtual environment using conda or virtuelenv.

In this environment, using pip directly from the github repository, run

pip install git+git://github.com/gVallverdu/pychemcurv.git

Alternatively, you can first clone the pychemcurv repository

git clone https://github.com/gVallverdu/pychemcurv.git

and then install the module and its dependencies using

pip install .

If you want to use the web application locally or if you want to use nglview to display structures in jupyter notebooks
you need to install more dependencies. The setup configuration provides the viz extra so, using pip, run one of

pip install .[viz]

escape square bracket with zsh
pip install .\[viz\]

If you have installed nglview you may have to enable the jupyter extension

jupyter-nbextension enable nglview --py --sys-prefix

7

https://github.com/arose/nglview

pychemcurv, Release 2022.3.17

3.3 Install in developper mode

In order to install in developper mode, first create an environment (using one of the provided file for example) and then
install using pip

pip install -e .[viz]

If you want to build the documentation you also need to install sphinx. A dedicated requirements file is provided in the
docs/ folder.

8 Chapter 3. Installation

CHAPTER

FOUR

RUN THE WEB APPLICATION

The web application is available in this separate repository: pychemcurv-app
https://github.com/gVallverdu/pychemcurv-app. The main aim of the application is to use the pychemcurv package
and visualize the geometrical or chemical atomic quantities mapped on the chemical structure of your system.

The application is available online at this address: pychemcurv.onrender.com/.

Demo video:

In order to run the application locally, you have to clone the repository and install all the dependencies. In particular
dash and dash-bio. You can do that from the requirements.txt provided in the repository of the application. Here
is a short procedure in order to install and run the application locally. It assumes pychemcurv is already installed in a
python environment called (curv):

[user@computer] (curv) > $ git clone https://github.com/gVallverdu/pychemcurv-app.git
[user@computer] (curv) > $ cd pychemcurv-app/
[user@computer] (curv) > $ python -m pip install -r requirements.txt
[user@computer] (curv) > $ python app.py
Running on http://127.0.0.1:8050/
Debugger PIN: 065-022-191
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on

Open the provided url to use the application.

You can switch off/on the debug mode by setting debug=False on the last line of the app.py file.

4.1 Common error on local execution

If the application does not start with an error such as:

socket.gaierror: [Errno 8] nodename nor servname provided, or not known

Go to the last lines of the file app.py and comment/uncomment the last lines to get something that reads

if __name__ == '__main__':
app.run_server(debug=True, host='127.0.0.1')
app.run_server(debug=False)

9

https://github.com/gVallverdu/pychemcurv-app
https://github.com/gVallverdu/pychemcurv-app
https://pychemcurv.onrender.com

pychemcurv, Release 2022.3.17

10 Chapter 4. Run the web application

CHAPTER

FIVE

LICENCE AND CONTACT

This software was developped at the Université de Pau et des Pays de l’Adour (UPPA) in the Institut des Sciences
Analytiques et de Physico-Chimie pour l’Environement et les Matériaux (IPREM) and the Institut Pluridisciplinaire de
Recherches Appliquées (IPRA) and is distributed under the MIT licence.

Authors

• Germain Salvato Vallverdu: germain.vallverdu@univ-pau.fr

• Julia Sabalot-cuzzubbo julia.sabalot@univ-pau.fr

• Didier Bégué: didier.begue@univ-pau.fr

• Jacky Cresson: jacky.cresson@univ-pau.fr

11

http://www.univ-pau.fr
http://iprem.univ-pau.fr/
http://iprem.univ-pau.fr/
http://ipra.univ-pau.fr/
http://ipra.univ-pau.fr/
https://opensource.org/licenses/MIT
mailto:germain.vallverdu@univ-pau.fr
mailto:sabalot.julia@univ-pau.fr
mailto:didier.begue@univ-pau.fr
mailto:jacky.cresson@univ-pau.fr
https://www.univ-pau.fr/en/home.html
http://www.cnrs.fr/
https://iprem.univ-pau.fr/fr/index.html

pychemcurv, Release 2022.3.17

12 Chapter 5. Licence and contact

CHAPTER

SIX

CORE CLASSES

Module pychemcur.core implements several classes in order to represents a vertex of a molecular squeleton and
compute geometrical and chemical indicators related to the local curvature around this vertex.

A complete and precise definition of all the quantities computed in the classes of this module can be found in article
[JCP2020].

6.1 Vertex classes

6.1.1 VertexAtom class

class pychemcurv.core.VertexAtom(a, star_a)
This class represents an atom (or a point) associated to a vertex of the squeleton of a molecule. The used notations
are the following. We denote by A a given atom caracterized by its cartesian coordinates corresponding to a vector
in R3. This atom A is bonded to one or several atoms B. The atoms B, bonded to atoms A belong to ⋆(𝐴) and are
caracterized by their cartesian coordinates defined as vectors in R3. The geometrical object obtained by drawing
a segment between bonded atoms is called the skeleton of the molecule and is the initial geometrical picture for
a molecule. This class is defined from the cartesian coordinates of atom A and the atoms belonging to ⋆(𝐴).

More generally, the classes only considers points in R3. The is not any chemical consideration here. In conse-
quence, the class can be used for all cases where a set of point in R3 is relevant.

Parameters

• a (np.ndarray) – cartesian coordinates of point/atom A in R3

• star_a (nd.array) – (N x 3) cartesian coordinates of points/atoms B in ⋆(𝐴)

static from_pyramid(length, theta, n_star_A=3, radians=False, perturb=None)
Set up a VertexAtom from an ideal pyramidal structure. Build an ideal pyramidal geometry given the angle
theta and randomize the positions by adding a noise of a given magnitude. The vertex of the pyramid is the
point A and ⋆(𝐴). are the points linked to the vertex. The size of ⋆(𝐴). is at least 3.

𝜃 is the angle between the normal vector of the plane defined from ⋆(𝐴) and the bonds between A and
⋆(𝐴). The pyramidalisation angle is defined from 𝜃 such as

𝑝𝑦𝑟𝐴 = 𝜃 − 𝜋

2

Parameters

• length (float) – the bond length

• theta (float) – Angle to define the pyramid

13

pychemcurv, Release 2022.3.17

• n_star_A (int) – number of point bonded to A the vertex of the pyramid.

• radian (bool) – True if theta is in radian (default False)

• perturb (float) – Give the width of a normal distribution from which random numbers
are choosen and added to the coordinates.

Returns
A VertexAtom instance

property a

Coordinates of atom A

property star_a

Coordinates of atoms B belonging to ⋆(𝐴)

property reg_star_a

Regularized coordinates of atoms/points B in ⋆(𝐴) such as all distances between A and points B are equal
to unity. This corresponds to 𝑅𝑒𝑔𝜖 ⋆ (𝐴) with 𝜖 = 1.

property normal

Unitary vector normal to the plane or the best fitting plane of atoms/points Bi in ⋆(𝐴).

property reg_normal

Unitary vector normal to the plane or the best fitting plane of atoms/points 𝑅𝑒𝑔𝐵𝑖 in ⋆(𝐴).

property com

Center of mass of atoms/points B in ⋆(𝐴)

property distances

Return all distances between atom A and atoms B belonging to ⋆(𝐴). Distances are in the same order as
the atoms in vertex.star_a.

get_angles(radians=True)
Compute angles theta_ij between the bonds ABi and ABj, atoms Bi and Bj belonging to ⋆(𝐴). The angle
theta_ij is made by the vectors ABi and ABj in the affine plane defined by this two vectors and atom A. The
computed angles are such as bond ABi are in a consecutive order.

Parameters
radians (bool) – if True (default) angles are returned in radians

property angular_defect

Compute the angular defect in radians as a measure of the discrete curvature around the vertex, point A.

The calculation first looks for the best fitting plane of points belonging to ⋆(𝐴) and sorts that points in order
to compute the angles between the edges connected to the vertex (A). See the get_angles method.

property pyr_distance

Compute the distance of atom A to the plane define by ⋆(𝐴) or the best fitting plane of ⋆(𝐴). The unit of
the distance is the same as the unit of the coordinates of A and ⋆(𝐴).

as_dict(radians=True, list_obj=False)
Return a dict version of all the properties that can be computed using this class. Use list_obj=True to get a
valid JSON object.

Parameters

• radians (bool) – if True, angles are returned in radians (default)

• list_obj (bool) – if True, numpy arrays are converted into list object (default False)

14 Chapter 6. Core classes

pychemcurv, Release 2022.3.17

Returns
A dict

write_file(species='C', filename='vertex.xyz')
Write the coordinates of atom A and atoms ⋆(𝐴) in a file in xyz format. You can set the name of species or
a list but the length of the list must be equal to the number of atoms. If filename is None, returns the string
corresponding to the xyz file.

Parameters

• species (str, list) – name of the species or list of the species names

• filename (str) – path of the output file or None to get a string

Returns
None if filename is a path, else, the string corresponding to the xyz file.

6.1.2 TrivalentVertex class

class pychemcurv.core.TrivalentVertex(a, star_a)
This object represents an atom (or a point) associated to a vertex of the squeleton of a molecule bonded to exactly
3 other atoms (or linked to 3 other points). This correspond to the trivalent case.

We denote by A a given atom caracterized by its cartesian coordinates corresponding to a vector in R3. This
atom A is bonded to 3 atoms B. The atoms B, bonded to atom A belong to ⋆(𝐴) and are caracterized by their
cartesian coordinates defined as vectors in R3. The geometrical object obtained by drawing a segment between
bonded atoms is called the skeleton of the molecule and is the initial geometrical picture for a molecule. This
class is defined from the cartesian coordinates of atom A and the atoms belonging to ⋆(𝐴).

More generally, the classes only considers points in R3. The is not any chemical consideration here. In conse-
quence, the class can be used for all cases where a set of point in R3 is relevant.

The following quantities are computed according the reference [JCP2020]

pyramidalization angle pyrA
The pyramidalization angle, in degrees. 𝑝𝑦𝑟𝐴 = 𝜃 − 𝜋/2 where 𝜃 is the angle between the normal vector
of the plane containing the atoms B of ⋆(𝐴) and a vector along a bond between atom A and one B atom.

An exact definition of pyrA needs that A is bonded to exactly 3 atoms in order to be able to define a uniq
plane that contains the atoms B belonging to ⋆(𝐴). Nevertheless, pyrA is computed if more than 3 atoms
are bonded to atom A by computing the best fitting plane of atoms belonging to ⋆(𝐴).

pyramidalization angle, pyrA_r
The pyramidalization angle in radians.

improper angle, improper
The improper angle corresponding to the dihedral angle between the planes defined by atoms (i, j, k) and
(j, k, l), atom i being atom A and atoms j, k and l being atoms of ⋆(𝐴). In consequence, the improper angle
is defined only if there are 3 atoms in ⋆(𝐴).

The value of the improper angle is returned in radians.

angular defect, angular_defect
The angluar defect is defined as

where 𝛼𝐹 are the angles at the vertex A of the faces 𝐹 ∈ ⋆(𝐴). The angular defect is computed whatever
the number of atoms in ⋆(𝐴).

The value of the angular defect is returned in radians.

6.1. Vertex classes 15

pychemcurv, Release 2022.3.17

spherical curvature, spherical_curvature
The spherical curvature is computed as the radius of the osculating sphere of atoms A and atoms belonging
to ⋆(𝐴). The spherical curvature is computed as

𝜅(𝐴) =
1√︃

ℓ2 +
(𝑂𝐴2 − ℓ2)2

4𝑧2𝐴

where O is the center of the circumbscribed circle of atoms in ⋆(𝐴) ; A the vertex atom ; OA the distance
between O and A ; ℓ the distance between O and atoms B of ⋆(𝐴) ; 𝑧𝐴 the distance of atom A to the plane
defined by ⋆(𝐴). The spherical curvature is defined only if there are 3 atoms in ⋆(𝐴).

pyramidalization distance pyr_distance
Distance of atom A to the plane define by ⋆(𝐴) or the best fitting plane of ⋆(𝐴).

The value of the distance is in the same unit as the coordinates.

If the number of atoms B in ⋆(𝐴) is not suitable to compute some properties, np.nan is returned.

Note that the plane defined by atoms B belonging to ⋆(𝐴) is exactly defined only in the case where there are three
atoms B in ⋆(𝐴). In the case of pyrA, if there are more than 3 atoms in ⋆(𝐴), the class use the best fitting plane
considering all atoms in ⋆(𝐴) and compute the geometrical quantities.

Parameters

• a (np.ndarray) – cartesian coordinates of point/atom A in R3

• star_a (nd.array) – (N x 3) cartesian coordinates of points/atoms B in ⋆(𝐴)

static from_pyramid(length, theta, radians=False, perturb=None)
Set up a VertexAtom from an ideal pyramidal structure. Build an ideal pyramidal geometry given the angle
theta and randomize the positions by adding a noise of a given magnitude. The vertex of the pyramid is the
point A and ⋆(𝐴). are the points linked to the vertex. The size of ⋆(𝐴). is 3.

𝜃 is the angle between the normal vector of the plane defined from ⋆(𝐴) and the bonds between A and
⋆(𝐴). The pyramidalisation angle is defined from 𝜃 such as

𝑝𝑦𝑟𝐴 = 𝜃 − 𝜋

2

Parameters

• length (float) – the bond length

• theta (float) – Angle to define the pyramid

• radian (bool) – True if theta is in radian (default False)

• perturb (float) – Give the width of a normal distribution from which random numbers
are choosen and added to the coordinates.

Returns
A TrivalentVertex instance

property improper

Compute the improper angle in randians between planes defined by atoms (i, j, k) and (j, k, l). Atom A, is
atom i and atoms j, k and l belong to ⋆(𝐴).

l
|
i
/ \

j k

16 Chapter 6. Core classes

pychemcurv, Release 2022.3.17

This quantity is available only if the length of ⋆(𝐴) is equal to 3.

property pyrA_r

Return the pyramidalization angle in radians.

property pyrA

Return the pyramidalization angle in degrees.

property spherical_curvature

Compute the spherical curvature associated to the osculating sphere of points A and points B belonging to
⋆(𝐴). Here, we assume that there is exactly 3 atoms B in ⋆(𝐴).

as_dict(radians=True, list_obj=False)
Return a dict version of all the properties that can be computed using this class. Use list_obj=True to get a
valid JSON object.

Parameters

• radians (bool) – if True, angles are returned in radians (default)

• list_obj (bool) – if True, numpy arrays are converted into list object (default False)

Returns
A dict.

6.2 POAV: Pi-Orbital Axis Vector

POAV stands for 𝜋-Orbital Axis Vector. The definition of this vector has its origin in the works of R.C. Haddon. The
definitions and the relation between POAV and the local curvature of a molecule using new geometrical object such as
the angular defect have been established in our recent work [JCP2020]. An discussion on the two POAV1 and POAV2
quantities is published in the work [POAV2].

Hereafter, the two classes POAV1 and POAV2 aim to compute quantities related to the two definitions of the POAV
vector.

6.2.1 POAV1

class pychemcurv.core.POAV1(vertex)
In the case of the POAV1 theory the POAV vector has the property to make a constant angle with each bond
connected to atom A.

This class computes indicators related to the POAV1 theory of R.C. Haddon following the link established be-
tween pyrA and the hybridization of a trivalent atom in reference [JCP2020].

A chemical picture of the hybridization can be drawn by considering the contribution of the 𝑝 atomic oribtals to
the system 𝜎, or the contribution of the s atomic orbital to the system 𝜋. This is achieved using the m and n quan-
tities. For consistency with POAV2 class, the attributes, hybridization, sigma_hyb_nbr and pi_hyb_nbr
are also implemented but return the same values.

POAV1 is defined from the local geometry of an atom at a vertex of the molecule’s squeleton.

Parameters
vertex (TrivalentVertex) – the trivalent vertex atom

property pyrA

Pyramidalization angle in degrees

6.2. POAV: Pi-Orbital Axis Vector 17

pychemcurv, Release 2022.3.17

property pyrA_r

Pyramidalization angle in radians

property poav

Return a unitary vector along the POAV vector

property c_pi

Value of 𝑐𝜋 in the ideal case of a 𝐶3𝑣 geometry. Equation (22), with 𝑐1,2 =
√︀
2/3.

𝑐𝜋 =
√
2 tan𝑃𝑦𝑟(𝐴)

property lambda_pi

value of 𝜆𝜋 in the ideal case of a 𝐶3𝑣 geometry. Equation (23), with 𝑐21,2 = 2/3.

𝜆𝜋 =
√︁

1− 2 tan2 𝑃𝑦𝑟(𝐴)

property m

value of hybridization number m, see equation (44)

𝑚 =

(︂
𝑐𝜋
𝜆𝜋

)︂2

property n

value of hybridization number n, see equation (47)

𝑛 = 3𝑚+ 2

property pi_hyb_nbr

This quantity measure the weight of the s atomic orbital with respect to the p atomic orbital in the ℎ𝜋 hybrid
orbital along the POAV vector.

This is equal to m.

property sigma_hyb_nbr

This quantity measure the weight of the p atomic orbitals with respect to s in the hi hybrid orbitals along
the bonds with atom A.

This is equal to n

property hybridization

Compute the hybridization such as

𝑠𝑝(2+𝑐2𝜋)/(1−𝑐2𝜋)

This quantity corresponds to the amount of p AO in the system 𝜎. This is equal to n and corresponds to the
𝑛̃ value defined by Haddon.

TODO: verifier si cette quantité est égale à n uniquement dans le cas C3v.

as_dict(radians=True, include_vertex=False, list_obj=False)
Return a dict version of all the properties that can be computed with this class. Note that in the case of 𝜆𝜋

and 𝑐𝜋 the squared values are returned as they are more meaningfull. Use list_obj= True to obtain a valid
JSON object.

Parameters

18 Chapter 6. Core classes

pychemcurv, Release 2022.3.17

• radians (bool) – if True, angles are returned in radians (default)

• include_vertex (bool) – if True, include also vertex data

• list_obj (bool) – if True, numpy arrays are converted into list object (default False)

Returns
A dict.

6.2.2 POAV2

class pychemcurv.core.POAV2(vertex)
In the case of the POAV2 theory the POAV2 vector on atom A is such as the set of hybrid molecular orbitals
ℎ𝜋, ℎ1, ℎ2, ℎ3 is orthogonal ; where the orbitals ℎ𝑖 are hybrid orbitals along the bonds with atoms linked to atom
A and ℎ𝜋 is the orbital along the POAV2 𝑢⃗𝜋 vector.

This class computes indicators related to the POAV2 theory of R.C. Haddon following the demonstrations in the
reference [POAV2].

POAV1 is defined from the local geometry of an atom at a vertex of the molecule’s squeleton.

Parameters
vertex (TrivalentVertex) – the trivalent vertex atom

property matrix

Compute and return the sigma-orbital hybridization numbers n1, n2 and n3

property u_pi

Return vector 𝑢𝜋 as the basis of the zero space of the matrix M. This unitary vector support the POAV2
vector.

property sigma_hyb_nbrs

Compute and return the sigma-orbital hybridization numbers n1, n2 and n3. These quantities measure the
weight of the p atomic orbitals with respect to s in each of the ℎ𝑖 hybrid orbitals along the bonds with atom
A.

property pi_hyb_nbr

This quantity measure the weight of the s atomic orbital with respect to the p atomic orbital in the ℎ𝜋 hybrid
orbital along the POAV2 vector.

property pyrA_r

Compute the angles between vector 𝑢𝜋 and all the bonds between atom A and atoms B in ⋆(𝐴).

as_dict(radians=True, include_vertex=False, list_obj=False)
Return a dict version of all the properties that can be computed with this class. Use list_obj= True to obtain
a valid JSON object.

Parameters

• radians (bool) – if True, angles are returned in radians (default)

• include_vertex (bool) – if True, include also vertex data

• list_obj (bool) – if True, numpy arrays are converted into list object (default False)

Returns
A dict.

6.2. POAV: Pi-Orbital Axis Vector 19

pychemcurv, Release 2022.3.17

20 Chapter 6. Core classes

CHAPTER

SEVEN

PYCHEMCURV.ANALYSIS

This module implements the CurvatureAnalyze class to perform curvature analyses on molecular or periodic structures.

7.1 CurvatureAnalyzer class

class pychemcurv.analysis.CurvatureAnalyzer(structure, bond_tol=0.2, rcut=2.5, bond_order=None)
This class provides helpful methods to analyze the local curvature on all atoms of a given structure. The structure
is either a molecule or a periodic structure. Once the structure is read, the class determines the connectivity of
the structure in order to define all vertices. The connectivity is defined on a distance criterion.

The class needs a pymatgen.Structure or pymatgen.Molecule object as first argument. The other arguments are
used to defined if two atoms are bonded or not.

Parameters

• structure (Structure, Molecule) – A Structure or Molecule pymatgen objects

• bond_tol (float) – Tolerance used to determine if two atoms are bonded. Look at pymat-
gen.core.CovalentBond.is_bonded.

• rcut (float) – Cutoff distance in case the bond is not not known

• bond_order (dict) – Not yet implemented

property vertices

List of vertices associated to each atom of the molecule

property bonds

Set of tuples of bonded atom index

property vertices_idx

List of tuples of the indexes of atoms in each vetex. The first index is atom A, the following are atoms of
⋆(𝐴).

property data

Return a Data Frame that contains all the geometric and hybridization data.

property distance_matrix

Returns the distance matrix between all atoms. For periodic structures, this returns the nearest image
distances.

static from_file(path, periodic=None)
Returns a CurvatureAnalyze object from the structure at the given path. This method relies on the file
format supported with pymatgen Molecule and Structure classes.

21

pychemcurv, Release 2022.3.17

Supported formats for periodic structure include CIF, POSCAR/CONTCAR, CHGCAR, LOCPOT,
vasprun.xml, CSSR, Netcdf and pymatgen’s JSON serialized structures.

Supported formats for molecule include include xyz, gaussian input (gjf|g03|g09|com|inp), Gaussian output
(.out|and pymatgen’s JSON serialized molecules.

Parameters

• path (str) – Path to the structure file

• periodic (bool) – if True, assume that the file correspond to a periodic structure. Default
is None. The method tries to read the file, first from the Molecule class and second from
the Structure class of pymatgen.

get_molecular_data()

Set up a model data dictionnary that contains species, coordinates and bonds of the structure. This dictio-
nnary can be used as model data for further visulization in bio-dash.

22 Chapter 7. pychemcurv.analysis

CHAPTER

EIGHT

PYCHEMCURV.VIS

The pychemcurv.vismodule implements the CurvatureViewer class in order to visualize a molecule or a periodic
structure in a jupyter notebook and map a given properties on the atoms using a color scale.

This class needs, nglview and uses ipywidgets in a jupyter notebook to display the visualization. Run the following
instructions to install nglview and achieve the configuration in order to be able to use nglview in a jupyter notebook

conda install nglview -c conda-forge
jupyter-nbextension enable nglview --py --sys-prefix

or

pip install nglview
jupyter-nbextension enable nglview --py --sys-prefix

Fig. 1: Visualization of the pyramidalization angle using a color scale.

23

https://github.com/arose/nglview

pychemcurv, Release 2022.3.17

8.1 CurvatureViewer class

class pychemcurv.vis.CurvatureViewer(structure, bond_tol=0.2, rcut=2.5, bond_order=None)
This class provides a constructor for a NGLView widget in order to visualize the wanted properties using a color
scale mapped on the 3D structure of the molecule or the structure.

The class needs a pymatgen.Structure or pymatgen.Molecule object as first argument. The other arguments are
used to defined if two atoms are bonded or not.

Parameters

• structure (Structure, Molecule) – A Structure or Molecule pymatgen objects

• bond_tol (float) – Tolerance used to determine if two atoms are bonded. Look at pymat-
gen.core.CovalentBond.is_bonded.

• rcut (float) – Cutoff distance in case the bond is not not known

• bond_order (dict) – Not yet implemented

get_view(representation='ball+stick', radius=0.25, aspect_ratio=2, unitcell=False, width='700px',
height='500px')

Set up a simple NGLView widget with the ball and stick or licorice representation of the structure.

Parameters

• representation (str) – representation: ‘ball+stick’ or ‘licorice’

• radius (float) – bond (stick) radius

• aspect_ratio (float) – ratio between the balls and stick radiuses

• unitcell (bool) – If True and structure is periodic, show the unitcell.

• width (str) – width of the nglview widget, default ‘700px’

• height (str) – height of the nglview widget, default ‘500px’

Returns
Return a NGLWidget object

map_view(prop, radius=0.25, aspect_ratio=2, unitcell=False, cm='viridis', minval=None, maxval=None,
orientation='vertical', label=None, width='700px', height='500px')

Map the given properties on a color scale on to the molecule using a ball and stick representations. The
properties can be either the name of a column of the data computed using the CurvatureAnalyzer class, or,
an array of values of a custum property. In the last case, the size of the array must be consistent with the
number of atoms in the system.

Parameters

• prop (str or array) – name of the properties or values you want to map

• radius (float) – bond (stick) radius

• aspect_ratio (float) – ratio between the balls and stick radiuses

• unitcell (bool) – If True and structure is periodic, show the unitcell.

• cm (str) – colormap from matplotlib.cm.

• minval (float) – minimum value to consider for the color sacle

• maxval (float) – maximum value to consider for the color sacle

• orientation (str) – orientation of the colorbar 'horizontal' or 'vertical'

24 Chapter 8. pychemcurv.vis

pychemcurv, Release 2022.3.17

• label (str) – Name of the colorbar. If None, use prop.

• width (str) – width of the nglview widget, default ‘700px’

• height (str) – height of the nglview widget, default ‘500px’

Returns
Returns an ipywidgets HBox or VBox with the NGLWidget and a color bar associated to the
mapped properties. The NGLWidget is the first element of the children, the colorbar is the
second one.

8.1. CurvatureViewer class 25

pychemcurv, Release 2022.3.17

26 Chapter 8. pychemcurv.vis

CHAPTER

NINE

PYCHEMCURV.GEOMETRY

This module implements utility functions to compute several geometric properties.

pychemcurv.geometry.center_of_mass(coords, masses=None)
Compute the center of mass of the points at coordinates coords with masses masses.

Parameters

• coords (np.ndarray) – (N, 3) matrix of the points in R3

• masses (np.ndarray) – vector of length N with the masses

Returns
The center of mass as a vector in R3

pychemcurv.geometry.circum_center(coords)
Compute the coordinates of the center of the circumscribed circle from three points A, B and C in R3.

Parameters
coords (ndarray) – (3x3) cartesian coordinates of points A, B and C.

Returns
The coordinates of the center of the cicumscribed circle

pychemcurv.geometry.get_plane(coords, masses=None)
Given a set of N points in R3, compute an orthonormal basis of vectors, the first two belonging to the plane and
the third one being normal to the plane. In the particular case where N equal 3, there is an exact definition of the
plane as the three points define an unique plan.

If N = 3, use a gram-schmidt orthonormalization to compute the vectors. If N > 3, the orthonormal basis is
obtained from SVD.

Parameters

• coords (np.ndarray) – (N, 3) matrix of the points in R3

• masses (np.ndarray) – vector of length N with the masses

Returns
Returns the orthonormal basis (vecx, vecy, n_a), vector n_a being normal to the plane.

pychemcurv.geometry.get_dihedral(coords)
Compute the improper angle in randians between planes defined by points (0, 1, 2) and (1, 2, 3). The returned
angle is a dihedral angle if the points 0, 1, 2 and 3 form a chain of bonded atoms in this order.

27

pychemcurv, Release 2022.3.17

0 3
\ /
1 -- 2

The returned angle is an improper angle if point 0 is at the center and linked to other points.

3
|
0
/ \

1 2

Parameters
coords (ndarray) – numpy array of the cartesian coordinates with shape (4, 3)

Returns
The dihedral angle value in radians.

28 Chapter 9. pychemcurv.geometry

CHAPTER

TEN

INTRODUCTION

Table of contents

• Introduction

– Features

– Citing pychemcurv

– Installation

∗ Installation from PyPi

∗ Installation from source

∗ Install in developper mode

– Run the web application

∗ Common error on local execution

– Licence and contact

pychemcurv is a python package for structural analyzes of molecular systems or solid state materials focusing on the
local curvature at an atomic scale. The local curvature is then used to compute the hybridization of molecular orbitals.

The main features of the library are available from a Plotly/Dash web application available here: pychem-
curv.onrender.com/. The web-app allows to upload simple xyz files and compute the local geometrical properties
and the hybridization properties. The application source code is available in a separate repository at pychemcurv-app.

10.1 Features

Pychemcurv is divided in two parts. The first one is a standard python package which provides two main classes to
compute the local curvature at the atomic scale and the hybridization of a given atom. Second, a Plotly/Dash web
application is provided in order to perform a geometrical and electronic analyzes on molecules or materials.

The web application is available at pychemcurv.onrender.com/. The web-app allows to upload simple xyz files and
compute the local geometrical properties and the hybridization properties. The application source code is available in
a separate repository at pychemcurv-app.

Some jupyter notebooks are provided in the notebooks/ folder and present use cases of the classes implemented in
this package. You can access to these notebooks online with binder.

29

https://plot.ly/dash/
https://pychemcurv.onrender.com
https://pychemcurv.onrender.com
https://github.com/gVallverdu/pychemcurv-app
https://plot.ly/dash/
https://pychemcurv.onrender.com
https://github.com/gVallverdu/pychemcurv-app
https://mybinder.org/
https://mybinder.org/v2/gh/gVallverdu/pychemcurv.git/2020.6.3

pychemcurv, Release 2022.3.17

Fig. 1: Pyramidalization angle of a 𝐶28 fullerene mapped on the structure with a colorscale.

10.2 Citing pychemcurv

Please, consider to cite the following papers when using either the pychemcurv library or the web application.

Julia Sabalot-Cuzzubbo, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Relating the molecular topology
and local geometry: Haddon’s pyramidalization angle and the Gaussian curvature, J. Chem. Phys. 152, 244310
(2020).

Julia Sabalot-Cuzzubbo, N. Cresson, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Haddon’s POAV2
vs POAV theory for non-planar molecules, J. Chem. Phys. 159, 174109 (2023).

10.3 Installation

10.3.1 Installation from PyPi

From November 2023, pychemcurv is available on pypi. You can install it directly using pip.

python -m pip install pychemcurv

30 Chapter 10. Introduction

https://aip.scitation.org/doi/10.1063/5.0008368
https://aip.scitation.org/doi/10.1063/5.0170800

pychemcurv, Release 2022.3.17

10.3.2 Installation from source

Before installing pychemcurv it is recommanded to create a virtual environment using conda or virtuelenv.

In this environment, using pip directly from the github repository, run

pip install git+git://github.com/gVallverdu/pychemcurv.git

Alternatively, you can first clone the pychemcurv repository

git clone https://github.com/gVallverdu/pychemcurv.git

and then install the module and its dependencies using

pip install .

If you want to use the web application locally or if you want to use nglview to display structures in jupyter notebooks
you need to install more dependencies. The setup configuration provides the viz extra so, using pip, run one of

pip install .[viz]

escape square bracket with zsh
pip install .\[viz\]

If you have installed nglview you may have to enable the jupyter extension

jupyter-nbextension enable nglview --py --sys-prefix

10.3.3 Install in developper mode

In order to install in developper mode, first create an environment (using one of the provided file for example) and then
install using pip

pip install -e .[viz]

If you want to build the documentation you also need to install sphinx. A dedicated requirements file is provided in the
docs/ folder.

10.4 Run the web application

The web application is available in this separate repository: pychemcurv-app
https://github.com/gVallverdu/pychemcurv-app. The main aim of the application is to use the pychemcurv package
and visualize the geometrical or chemical atomic quantities mapped on the chemical structure of your system.

The application is available online at this address: pychemcurv.onrender.com/.

Demo video:

In order to run the application locally, you have to clone the repository and install all the dependencies. In particular
dash and dash-bio. You can do that from the requirements.txt provided in the repository of the application. Here
is a short procedure in order to install and run the application locally. It assumes pychemcurv is already installed in a
python environment called (curv):

10.4. Run the web application 31

https://github.com/arose/nglview
https://github.com/gVallverdu/pychemcurv-app
https://github.com/gVallverdu/pychemcurv-app
https://pychemcurv.onrender.com

pychemcurv, Release 2022.3.17

[user@computer] (curv) > $ git clone https://github.com/gVallverdu/pychemcurv-app.git
[user@computer] (curv) > $ cd pychemcurv-app/
[user@computer] (curv) > $ python -m pip install -r requirements.txt
[user@computer] (curv) > $ python app.py
Running on http://127.0.0.1:8050/
Debugger PIN: 065-022-191
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on

Open the provided url to use the application.

You can switch off/on the debug mode by setting debug=False on the last line of the app.py file.

10.4.1 Common error on local execution

If the application does not start with an error such as:

socket.gaierror: [Errno 8] nodename nor servname provided, or not known

Go to the last lines of the file app.py and comment/uncomment the last lines to get something that reads

if __name__ == '__main__':
app.run_server(debug=True, host='127.0.0.1')
app.run_server(debug=False)

10.5 Licence and contact

This software was developped at the Université de Pau et des Pays de l’Adour (UPPA) in the Institut des Sciences
Analytiques et de Physico-Chimie pour l’Environement et les Matériaux (IPREM) and the Institut Pluridisciplinaire de
Recherches Appliquées (IPRA) and is distributed under the MIT licence.

Authors

• Germain Salvato Vallverdu: germain.vallverdu@univ-pau.fr

• Julia Sabalot-cuzzubbo julia.sabalot@univ-pau.fr

• Didier Bégué: didier.begue@univ-pau.fr

• Jacky Cresson: jacky.cresson@univ-pau.fr

32 Chapter 10. Introduction

http://www.univ-pau.fr
http://iprem.univ-pau.fr/
http://iprem.univ-pau.fr/
http://ipra.univ-pau.fr/
http://ipra.univ-pau.fr/
https://opensource.org/licenses/MIT
mailto:germain.vallverdu@univ-pau.fr
mailto:sabalot.julia@univ-pau.fr
mailto:didier.begue@univ-pau.fr
mailto:jacky.cresson@univ-pau.fr
https://www.univ-pau.fr/en/home.html
http://www.cnrs.fr/
https://iprem.univ-pau.fr/fr/index.html

BIBLIOGRAPHY

[JCP2020] Julia Sabalot-Cuzzubbo, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Relating the molec-
ular topology and local geometry: Haddon’s pyramidalization angle and the Gaussian curvature, J. Chem.
Phys. 152, 244310 (2020). https://aip.scitation.org/doi/10.1063/5.0008368

[POAV2] Julia Sabalot-Cuzzubbo, N. Cresson, Germain Salvato Vallverdu, Didier Bégué and Jacky Cresson Had-
don’s POAV2 vs POAV theory for non-planar molecules, J. Chem. Phys. 159, 174109 (2023). https:
//aip.scitation.org/doi/10.1063/5.0170800

33

https://aip.scitation.org/doi/10.1063/5.0008368
https://aip.scitation.org/doi/10.1063/5.0170800
https://aip.scitation.org/doi/10.1063/5.0170800

pychemcurv, Release 2022.3.17

34 Bibliography

PYTHON MODULE INDEX

p
pychemcurv.analysis, 21
pychemcurv.core, 13
pychemcurv.geometry, 27
pychemcurv.vis, 23

35

pychemcurv, Release 2022.3.17

36 Python Module Index

INDEX

A
a (pychemcurv.core.VertexAtom property), 14
angular_defect (pychemcurv.core.VertexAtom prop-

erty), 14
as_dict() (pychemcurv.core.POAV1 method), 18
as_dict() (pychemcurv.core.POAV2 method), 19
as_dict() (pychemcurv.core.TrivalentVertex method),

17
as_dict() (pychemcurv.core.VertexAtom method), 14

B
bonds (pychemcurv.analysis.CurvatureAnalyzer prop-

erty), 21

C
c_pi (pychemcurv.core.POAV1 property), 18
center_of_mass() (in module pychemcurv.geometry),

27
circum_center() (in module pychemcurv.geometry), 27
com (pychemcurv.core.VertexAtom property), 14
CurvatureAnalyzer (class in pychemcurv.analysis), 21
CurvatureViewer (class in pychemcurv.vis), 24

D
data (pychemcurv.analysis.CurvatureAnalyzer property),

21
distance_matrix (pychem-

curv.analysis.CurvatureAnalyzer property),
21

distances (pychemcurv.core.VertexAtom property), 14

F
from_file() (pychemcurv.analysis.CurvatureAnalyzer

static method), 21
from_pyramid() (pychemcurv.core.TrivalentVertex

static method), 16
from_pyramid() (pychemcurv.core.VertexAtom static

method), 13

G
get_angles() (pychemcurv.core.VertexAtom method),

14

get_dihedral() (in module pychemcurv.geometry), 27
get_molecular_data() (pychem-

curv.analysis.CurvatureAnalyzer method),
22

get_plane() (in module pychemcurv.geometry), 27
get_view() (pychemcurv.vis.CurvatureViewer method),

24

H
hybridization (pychemcurv.core.POAV1 property), 18

I
improper (pychemcurv.core.TrivalentVertex property),

16

L
lambda_pi (pychemcurv.core.POAV1 property), 18

M
m (pychemcurv.core.POAV1 property), 18
map_view() (pychemcurv.vis.CurvatureViewer method),

24
matrix (pychemcurv.core.POAV2 property), 19
module

pychemcurv.analysis, 21
pychemcurv.core, 13
pychemcurv.geometry, 27
pychemcurv.vis, 23

N
n (pychemcurv.core.POAV1 property), 18
normal (pychemcurv.core.VertexAtom property), 14

P
pi_hyb_nbr (pychemcurv.core.POAV1 property), 18
pi_hyb_nbr (pychemcurv.core.POAV2 property), 19
poav (pychemcurv.core.POAV1 property), 18
POAV1 (class in pychemcurv.core), 17
POAV2 (class in pychemcurv.core), 19
pychemcurv.analysis

module, 21
pychemcurv.core

37

pychemcurv, Release 2022.3.17

module, 13
pychemcurv.geometry
module, 27

pychemcurv.vis
module, 23

pyr_distance (pychemcurv.core.VertexAtom property),
14

pyrA (pychemcurv.core.POAV1 property), 17
pyrA (pychemcurv.core.TrivalentVertex property), 17
pyrA_r (pychemcurv.core.POAV1 property), 17
pyrA_r (pychemcurv.core.POAV2 property), 19
pyrA_r (pychemcurv.core.TrivalentVertex property), 17

R
reg_normal (pychemcurv.core.VertexAtom property), 14
reg_star_a (pychemcurv.core.VertexAtom property), 14

S
sigma_hyb_nbr (pychemcurv.core.POAV1 property), 18
sigma_hyb_nbrs (pychemcurv.core.POAV2 property),

19
spherical_curvature (pychem-

curv.core.TrivalentVertex property), 17
star_a (pychemcurv.core.VertexAtom property), 14

T
TrivalentVertex (class in pychemcurv.core), 15

U
u_pi (pychemcurv.core.POAV2 property), 19

V
VertexAtom (class in pychemcurv.core), 13
vertices (pychemcurv.analysis.CurvatureAnalyzer

property), 21
vertices_idx (pychemcurv.analysis.CurvatureAnalyzer

property), 21

W
write_file() (pychemcurv.core.VertexAtom method),

15

38 Index

	Features
	Citing pychemcurv
	Installation
	Installation from PyPi
	Installation from source
	Install in developper mode

	Run the web application
	Common error on local execution

	Licence and contact
	Core classes
	Vertex classes
	VertexAtom class
	TrivalentVertex class

	POAV: Pi-Orbital Axis Vector
	POAV1
	POAV2

	pychemcurv.analysis
	CurvatureAnalyzer class

	pychemcurv.vis
	CurvatureViewer class

	pychemcurv.geometry
	Introduction
	Features
	Citing pychemcurv
	Installation
	Installation from PyPi
	Installation from source
	Install in developper mode

	Run the web application
	Common error on local execution

	Licence and contact

	Bibliography
	Python Module Index
	Index

