Source code for pychemcurv.core

# coding: utf-8

"""
Module ``pychemcur.core`` implements several classes in order to represents a vertex of 
a molecular squeleton and compute geometrical and chemical indicators related
to the local curvature around this vertex.

A complete and precise definition of all the quantities computed in the 
classes of this module can be found in article [JCP2020]_.

.. [JCP2020] Julia Sabalot-Cuzzubbo, Germain Salvato Vallverdu, Didier Bégué 
    and Jacky Cresson *Relating the molecular topology and local geometry: 
    Haddon’s pyramidalization angle and the Gaussian curvature*, J. Chem. Phys. 
    **152**, 244310 (2020). https://aip.scitation.org/doi/10.1063/5.0008368

.. [POAV2] Julia Sabalot-Cuzzubbo, N. Cresson, Germain Salvato Vallverdu, Didier
    Bégué and Jacky Cresson *Haddon’s POAV2 vs POAV theory for non-planar molecules*, 
    J. Chem. Phys. **159**, 174109 (2023). https://aip.scitation.org/doi/10.1063/5.0170800

"""

import numpy as np
from scipy.linalg import null_space
from .geometry import get_plane, circum_center, center_of_mass, get_dihedral

__all__ = ["VertexAtom", "TrivalentVertex", "POAV1", "POAV2"]


[docs]class VertexAtom: r""" This class represents an atom (or a point) associated to a vertex of the squeleton of a molecule. The used notations are the following. We denote by A a given atom caracterized by its cartesian coordinates corresponding to a vector in :math:`\mathbb{R}^3`. This atom A is bonded to one or several atoms B. The atoms B, bonded to atoms A belong to :math:`\star(A)` and are caracterized by their cartesian coordinates defined as vectors in :math:`\mathbb{R}^3`. The geometrical object obtained by drawing a segment between bonded atoms is called the skeleton of the molecule and is the initial geometrical picture for a molecule. This class is defined from the cartesian coordinates of atom A and the atoms belonging to :math:`\star(A)`. More generally, the classes only considers points in :math:`\mathbb{R}^3`. The is not any chemical consideration here. In consequence, the class can be used for all cases where a set of point in :math:`\mathbb{R}^3` is relevant. """ def __init__(self, a, star_a): r""" Args: a (np.ndarray): cartesian coordinates of point/atom A in :math:`\mathbb{R}^3` star_a (nd.array): (N x 3) cartesian coordinates of points/atoms B in :math:`\star(A)` """ # check point/atom A try: self._a = np.array(a, dtype=np.float64).reshape(3) except ValueError: print("a = ", a) raise ValueError("Cannot convert a in a numpy array of floats.") # check points/atoms B in *(A) try: self._star_a = np.array(star_a, dtype=np.float64) self._star_a = self._star_a.reshape(self._star_a.size // 3, 3) except ValueError: print("*A, star_a = ", star_a) raise ValueError("Cannot convert star_a in a numpy array of floats" " with a shape (N, 3).") if self._star_a.shape[0] < 3: print("*A, star_a = ", star_a) raise ValueError("The shape of *(A) is not relevant. Needs at least" " 3 points/atoms in *(A)") # compute the regularized coordinates of atoms/points B in *(A) u = self._star_a - self._a self._distances = np.linalg.norm(u, axis=1) u /= self._distances[:, np.newaxis] self._reg_star_a = self._a + u # center of mass of atoms/points B in *(A) self._com = center_of_mass(self._star_a) # compute a normal vector of *(A) _, _, self._normal = get_plane(self._star_a) # compute a normal vector of the plane Reg *(A) using the regularized # coordinates of atoms/points B in *(A) _, _, self._reg_normal = get_plane(self._reg_star_a) # make the direction IA and the normal vectors of *(A) or Reg *(A) the same # I is the center of mass of *(A) IA = self.a - self.com if np.dot(IA, self._normal) < 0: self._normal = -self._normal if np.dot(IA, self.reg_normal) < 0: self._reg_normal = -self.reg_normal
[docs] @staticmethod def from_pyramid(length, theta, n_star_A=3, radians=False, perturb=None): r"""Set up a VertexAtom from an ideal pyramidal structure. Build an ideal pyramidal geometry given the angle theta and randomize the positions by adding a noise of a given magnitude. The vertex of the pyramid is the point A and :math:`\star(A)`. are the points linked to the vertex. The size of :math:`\star(A)`. is at least 3. :math:`\theta` is the angle between the normal vector of the plane defined from :math:`\star(A)` and the bonds between A and :math:`\star(A)`. The pyramidalisation angle is defined from :math:`\theta` such as .. math:: pyrA = \theta - \frac{\pi}{2} Args: length (float): the bond length theta (float): Angle to define the pyramid n_star_A (int): number of point bonded to A the vertex of the pyramid. radian (bool): True if theta is in radian (default False) perturb (float): Give the width of a normal distribution from which random numbers are choosen and added to the coordinates. Returns: A VertexAtom instance """ r_theta = theta if radians else np.radians(theta) if n_star_A < 3: raise ValueError( "n_star_A = {} and must be greater than 3.".format(n_star_A)) # build an ideal pyramid IB = length * np.sin(r_theta) step_angle = 2 * np.pi / n_star_A coords = [[0, 0, -length * np.cos(r_theta)]] coords += [[IB * np.cos(iat * step_angle), IB * np.sin(iat * step_angle), 0] for iat in range(n_star_A)] coords = np.array(coords, dtype=np.float64) # randomize positions if perturb: coords[1:, :] += np.random.normal(0, perturb, size=(n_star_A, 3)) return VertexAtom(coords[0], coords[1:])
@property def a(self): """ Coordinates of atom A """ return self._a @property def star_a(self): r""" Coordinates of atoms B belonging to :math:`\star(A)` """ return self._star_a @property def reg_star_a(self): r""" Regularized coordinates of atoms/points B in :math:`\star(A)` such as all distances between A and points B are equal to unity. This corresponds to :math:`Reg_{\epsilon}\star(A)` with :math:`\epsilon` = 1. """ return self._reg_star_a @property def normal(self): r""" Unitary vector normal to the plane or the best fitting plane of atoms/points Bi in :math:`\star(A)`. """ return self._normal @property def reg_normal(self): r""" Unitary vector normal to the plane or the best fitting plane of atoms/points :math:`Reg B_i` in :math:`\star(A)`. """ return self._reg_normal @property def com(self): r""" Center of mass of atoms/points B in :math:`\star(A)` """ return self._com @property def distances(self): r""" Return all distances between atom A and atoms B belonging to :math:`\star(A)`. Distances are in the same order as the atoms in ``vertex.star_a``. """ return self._distances
[docs] def get_angles(self, radians=True): r""" Compute angles theta_ij between the bonds ABi and ABj, atoms Bi and Bj belonging to :math:`\star(A)`. The angle theta_ij is made by the vectors ABi and ABj in the affine plane defined by this two vectors and atom A. The computed angles are such as bond ABi are in a consecutive order. Args: radians (bool): if True (default) angles are returned in radians """ if self._star_a.shape[0] == 3: angles = dict() for i, j in [(0, 1), (0, 2), (1, 2)]: u = self.reg_star_a[i, :] - self._a v = self.reg_star_a[j, :] - self._a cos = np.dot(u, v) if radians: angles[(i, j)] = np.arccos(cos) else: angles[(i, j)] = np.degrees(np.arccos(cos)) else: # get P the plane of *(A) vecx, vecy, _ = get_plane(self.reg_star_a) # compute all angles with vecx in order to sort atoms of *(A) com = center_of_mass(self.reg_star_a) u = self.reg_star_a - com norm = np.linalg.norm(u, axis=1) u /= norm[:, np.newaxis] cos = np.dot(u, vecx) angles = np.where(np.dot(u, vecy) > 0, np.arccos(cos), 2 * np.pi - np.arccos(cos)) # sort points according to angles idx = np.arange(angles.size) idx = idx[np.argsort(angles)] idx = np.append(idx, idx[0]) # compute curvature angles = dict() for i, j in np.column_stack([idx[:-1], idx[1:]]): u = self.reg_star_a[i, :] - self._a u /= np.linalg.norm(u) v = self.reg_star_a[j, :] - self._a v /= np.linalg.norm(v) cos = np.dot(u, v) if radians: angles[(i, j)] = np.arccos(cos) else: angles[(i, j)] = np.degrees(np.arccos(cos)) return angles
@property def angular_defect(self): r""" Compute the angular defect in radians as a measure of the discrete curvature around the vertex, point A. The calculation first looks for the best fitting plane of points belonging to :math:`\star(A)` and sorts that points in order to compute the angles between the edges connected to the vertex (A). See the get_angles method. """ angles = self.get_angles(radians=True) ang_defect = 2 * np.pi - sum(angles.values()) return ang_defect @property def pyr_distance(self): r""" Compute the distance of atom A to the plane define by :math:`\star(A)` or the best fitting plane of :math:`\star(A)`. The unit of the distance is the same as the unit of the coordinates of A and :math:`\star(A)`. """ return np.abs(np.dot(self._a - self.com, self.normal))
[docs] def as_dict(self, radians=True, list_obj=False): """ Return a dict version of all the properties that can be computed using this class. Use `list_obj=True` to get a valid JSON object. Args: radians (bool): if True, angles are returned in radians (default) list_obj (bool): if True, numpy arrays are converted into list object (default False) Returns: A dict """ angles = self.get_angles(radians=radians) angles = [[i, j, angle] for (i,j), angle in angles.items()] data = { "atom_A": self.a.tolist() if list_obj else self.a, "star_A": self.star_a.tolist() if list_obj else self.star_a, "reg_star_A": self.reg_star_a.tolist() if list_obj else self.reg_star_a, "distances": self.distances.tolist() if list_obj else self.distances, "angles": angles, "n_star_A": len(self.star_a), "angular_defect": self.angular_defect if radians else np.degrees(self.angular_defect), "pyr_distance": self.pyr_distance, } return data
[docs] def write_file(self, species="C", filename="vertex.xyz"): r"""Write the coordinates of atom A and atoms :math:`\star(A)` in a file in xyz format. You can set the name of species or a list but the length of the list must be equal to the number of atoms. If filename is None, returns the string corresponding to the xyz file. Args: species (str, list): name of the species or list of the species names filename (str): path of the output file or None to get a string Returns: None if filename is a path, else, the string corresponding to the xyz file. """ nat = len(self.star_a) + 1 if len(species) != nat: species = nat * "C" lines = "%d\n" % nat lines += "xyz file from pychemcurv\n" lines += "%2s %12.6f %12.6f %12.6f\n" % (species[0], self.a[0], self.a[1], self.a[2]) for iat in range(1, nat): lines += "%2s " % species[iat] lines += " ".join(["%12.6f" % x for x in self.star_a[iat - 1]]) lines += "\n" if filename is not None: with open(filename, "w", encoding="utf-8") as f: f.write(lines) else: return lines
def __str__(self): """ str representatio of the vertex atom """ s = "angular defect: {:.4f} degrees\n".format( np.degrees(self.angular_defect)) s += "size of *(A): {}\n".format(len(self.star_a)) s += "Atom A:\n{}\n".format(self.a) s += "Atoms B in *(A):\n{}\n".format(self.star_a) return s def __repr__(self): """ representation of the vertex atom """ return "VertexAtom(a={}, star_a={})".format(self.a, self.star_a)
[docs]class TrivalentVertex(VertexAtom): r""" This object represents an atom (or a point) associated to a vertex of the squeleton of a molecule bonded to exactly 3 other atoms (or linked to 3 other points). This correspond to the trivalent case. We denote by A a given atom caracterized by its cartesian coordinates corresponding to a vector in :math:`\mathbb{R}^3`. This atom A is bonded to 3 atoms B. The atoms B, bonded to atom A belong to :math:`\star(A)` and are caracterized by their cartesian coordinates defined as vectors in :math:`\mathbb{R}^3`. The geometrical object obtained by drawing a segment between bonded atoms is called the skeleton of the molecule and is the initial geometrical picture for a molecule. This class is defined from the cartesian coordinates of atom A and the atoms belonging to :math:`\star(A)`. More generally, the classes only considers points in :math:`\mathbb{R}^3`. The is not any chemical consideration here. In consequence, the class can be used for all cases where a set of point in :math:`\mathbb{R}^3` is relevant. The following quantities are computed according the reference [JCP2020]_ pyramidalization angle ``pyrA`` The pyramidalization angle, **in degrees**. :math:`pyrA = \theta - \pi/2` where :math:`\theta` is the angle between the normal vector of the plane containing the atoms B of :math:`\star(A)` and a vector along a bond between atom A and one B atom. An exact definition of pyrA needs that A is bonded to exactly 3 atoms in order to be able to define a uniq plane that contains the atoms B belonging to :math:`\star(A)`. Nevertheless, pyrA is computed if more than 3 atoms are bonded to atom A by computing the best fitting plane of atoms belonging to :math:`\star(A)`. pyramidalization angle, ``pyrA_r`` The pyramidalization angle **in radians**. improper angle, ``improper`` The improper angle corresponding to the dihedral angle between the planes defined by atoms (i, j, k) and (j, k, l), atom i being atom A and atoms j, k and l being atoms of :math:`\star(A)`. In consequence, the improper angle is defined only if there are 3 atoms in :math:`\star(A)`. The value of the improper angle is returned in radians. angular defect, ``angular_defect`` The angluar defect is defined as .. math: 2\pi - \sum_{F\in\star(A)} \alpha_F where :math:`\alpha_F` are the angles at the vertex A of the faces :math:`F\in\star(A)`. The angular defect is computed whatever the number of atoms in :math:`\star(A)`. The value of the angular defect is returned in radians. spherical curvature, ``spherical_curvature`` The spherical curvature is computed as the radius of the osculating sphere of atoms A and atoms belonging to :math:`\star(A)`. The spherical curvature is computed as .. math:: \kappa(A) = \frac{1}{\sqrt{\ell^2 + \dfrac{(OA^2 - \ell^2)^2}{4z_A^2}}} where O is the center of the circumbscribed circle of atoms in :math:`\star(A)` ; A the vertex atom ; OA the distance between O and A ; :math:`\ell` the distance between O and atoms B of :math:`\star(A)` ; :math:`z_A` the distance of atom A to the plane defined by :math:`\star(A)`. The spherical curvature is defined only if there are 3 atoms in :math:`\star(A)`. pyramidalization distance ``pyr_distance`` Distance of atom A to the plane define by :math:`\star(A)` or the best fitting plane of :math:`\star(A)`. The value of the distance is in the same unit as the coordinates. If the number of atoms B in :math:`\star(A)` is not suitable to compute some properties, `np.nan` is returned. Note that the plane defined by atoms B belonging to :math:`\star(A)` is exactly defined *only* in the case where there are three atoms B in :math:`\star(A)`. In the case of pyrA, if there are more than 3 atoms in :math:`\star(A)`, the class use the best fitting plane considering all atoms in :math:`\star(A)` and compute the geometrical quantities. """ def __init__(self, a, star_a): r""" Args: a (np.ndarray): cartesian coordinates of point/atom A in :math:`\mathbb{R}^3` star_a (nd.array): (N x 3) cartesian coordinates of points/atoms B in :math:`\star(A)` """ super().__init__(a, star_a) if self._star_a.shape[0] != 3: raise ValueError("The number of atoms/points in *(A) must be 3." " star_a.shape is {}".format(self._star_a.shape))
[docs] @staticmethod def from_pyramid(length, theta, radians=False, perturb=None): r"""Set up a VertexAtom from an ideal pyramidal structure. Build an ideal pyramidal geometry given the angle theta and randomize the positions by adding a noise of a given magnitude. The vertex of the pyramid is the point A and :math:`\star(A)`. are the points linked to the vertex. The size of :math:`\star(A)`. is 3. :math:`\theta` is the angle between the normal vector of the plane defined from :math:`\star(A)` and the bonds between A and :math:`\star(A)`. The pyramidalisation angle is defined from :math:`\theta` such as .. math:: pyrA = \theta - \frac{\pi}{2} Args: length (float): the bond length theta (float): Angle to define the pyramid radian (bool): True if theta is in radian (default False) perturb (float): Give the width of a normal distribution from which random numbers are choosen and added to the coordinates. Returns: A TrivalentVertex instance """ va = VertexAtom.from_pyramid( length, theta, n_star_A=3, radians=radians, perturb=perturb ) return TrivalentVertex(a=va.a, star_a=va.star_a)
@property def improper(self): r""" Compute the improper angle in randians between planes defined by atoms (i, j, k) and (j, k, l). Atom A, is atom i and atoms j, k and l belong to :math:`\star(A)`. :: l | i / \ j k This quantity is available only if the length of :math:`\star(A)` is equal to 3. """ return get_dihedral(np.concatenate((self._a[np.newaxis, :], self._star_a))) @property def pyrA_r(self): """ Return the pyramidalization angle in radians. """ # compute pyrA v = self.reg_star_a[0] - self._a v /= np.linalg.norm(v) pyrA = np.arccos(np.dot(v, self.reg_normal)) - np.pi / 2 return pyrA @property def pyrA(self): """ Return the pyramidalization angle in degrees. """ return np.degrees(self.pyrA_r) @property def spherical_curvature(self): r""" Compute the spherical curvature associated to the osculating sphere of points A and points B belonging to :math:`\star(A)`. Here, we assume that there is exactly 3 atoms B in :math:`\star(A)`. """ # plane *(A) point_O = circum_center(self._star_a) # needed length l = np.linalg.norm(self._star_a[0] - point_O) z_A = np.dot(self._a - point_O, self.normal) OA = np.linalg.norm(self._a - point_O) # spherical curvature if np.isclose(z_A, 0, atol=0, rtol=1e-7): kappa = np.nan else: kappa = 1 / np.sqrt(l**2 + (OA**2 - l**2)**2 / (4 * z_A**2)) return kappa
[docs] def as_dict(self, radians=True, list_obj=False): """ Return a dict version of all the properties that can be computed using this class. Use `list_obj=True` to get a valid JSON object. Args: radians (bool): if True, angles are returned in radians (default) list_obj (bool): if True, numpy arrays are converted into list object (default False) Returns: A dict. """ data = super().as_dict(radians=radians, list_obj=list_obj) data.update({ "pyrA": self.pyrA_r if radians else self.pyrA, "spherical_curvature": self.spherical_curvature, "improper": self.improper if radians else np.degrees(self.improper), }) return data
def __str__(self): """ str representation of the vertex atom """ s = "pyrA: {:.4f} degrees\n".format(self.pyrA) s += "Atom A:\n{}\n".format(self.a) s += "Atoms B in *(A):\n{}\n".format(self.star_a) return s def __repr__(self): """ representation of the vertex atom """ return "TrivalentVertex(a={}, star_a={})".format(self.a, self.star_a)
[docs]class POAV1: r""" In the case of the POAV1 theory the POAV vector has the property to make a constant angle with each bond connected to atom A. This class computes indicators related to the POAV1 theory of R.C. Haddon following the link established between pyrA and the hybridization of a trivalent atom in reference [JCP2020]_. A chemical picture of the hybridization can be drawn by considering the contribution of the :math:`p` atomic oribtals to the system :math:`\sigma`, or the contribution of the s atomic orbital to the system :math:`\pi`. This is achieved using the m and n quantities. For consistency with POAV2 class, the attributes, ``hybridization``, ``sigma_hyb_nbr`` and ``pi_hyb_nbr`` are also implemented but return the same values. """ def __init__(self, vertex): r""" POAV1 is defined from the local geometry of an atom at a vertex of the molecule's squeleton. Args: vertex (TrivalentVertex): the trivalent vertex atom """ if isinstance(vertex, TrivalentVertex): self.vertex = vertex elif isinstance(vertex, VertexAtom): self.vertex = TrivalentVertex(vertex.a, vertex.star_a) else: raise TypeError("vertex must be of type VertexAtom or of type" " TrivalentVertex. vertex is {}".format(type(vertex))) @property def pyrA(self): """ Pyramidalization angle in degrees """ return self.vertex.pyrA @property def pyrA_r(self): """ Pyramidalization angle in radians """ return self.vertex.pyrA_r @property def poav(self): """ Return a unitary vector along the POAV vector """ return self.vertex.reg_normal @property def c_pi(self): r""" Value of :math:`c_{\pi}` in the ideal case of a :math:`C_{3v}` geometry. Equation (22), with :math:`c_{1,2} = \sqrt{2/3}`. .. math:: c_{\pi} = \sqrt{2} \tan Pyr(A) """ return np.sqrt(2) * np.tan(self.pyrA_r) @property def lambda_pi(self): r""" value of :math:`\lambda_{\pi}` in the ideal case of a :math:`C_{3v}` geometry. Equation (23), with :math:`c^2_{1,2} = 2/3`. .. math:: \lambda_{\pi} = \sqrt{1 - 2 \tan^2 Pyr (A)} """ # check domain definition of lambda_pi value = 1 - 2 * np.tan(self.pyrA_r) ** 2 if value < 0: raise ValueError("lambda_pi is not define. " "pyrA (degrees) = {}".format(self.pyrA)) else: return np.sqrt(value) @property def m(self): r""" value of hybridization number m, see equation (44) .. math:: m = \left(\frac{c_{\pi}}{\lambda_{\pi}}\right)^2 """ return (self.c_pi / self.lambda_pi) ** 2 @property def n(self): """ value of hybridization number n, see equation (47) .. math:: n = 3m + 2 """ return 3 * self.m + 2 @property def pi_hyb_nbr(self): r""" This quantity measure the weight of the s atomic orbital with respect to the p atomic orbital in the :math:`h_{\pi}` hybrid orbital along the POAV vector. This is equal to m. """ return self.m @property def sigma_hyb_nbr(self): """ This quantity measure the weight of the p atomic orbitals with respect to s in the hi hybrid orbitals along the bonds with atom A. This is equal to n """ return self.n @property def hybridization(self): r""" Compute the hybridization such as .. math:: s p^{(2 + c_{\pi}^2) / (1 - c_{\pi}^2)} This quantity corresponds to the amount of p AO in the system :math:`\sigma`. This is equal to n and corresponds to the :math:`\tilde{n}` value defined by Haddon. TODO: verifier si cette quantité est égale à n uniquement dans le cas C3v. """ # return self.n return (2 + self.c_pi ** 2) / (1 - self.c_pi ** 2)
[docs] def as_dict(self, radians=True, include_vertex=False, list_obj=False): r""" Return a dict version of all the properties that can be computed with this class. Note that in the case of :math:`\lambda_{\pi}` and :math:`c_{\pi}` the squared values are returned as they are more meaningfull. Use `list_obj= True` to obtain a valid JSON object. Args: radians (bool): if True, angles are returned in radians (default) include_vertex (bool): if True, include also vertex data list_obj (bool): if True, numpy arrays are converted into list object (default False) Returns: A dict. """ data = { "hybridization": self.hybridization, "n": self.n, "m": self.m, # "lambda_pi": self.lambda_pi, # "c_pi": self.c_pi, "c_pi^2": self.c_pi ** 2, "lambda_pi^2": self.lambda_pi ** 2, "poav": self.poav.tolist() if list_obj else self.poav, } if include_vertex: data.update(self.vertex.as_dict( radians=radians, list_obj=list_obj)) return data
[docs]class POAV2: r""" In the case of the POAV2 theory the POAV2 vector on atom A is such as the set of hybrid molecular orbitals :math:`{h_{\pi}, h_1, h_2, h_3}` is orthogonal ; where the orbitals :math:`h_i` are hybrid orbitals along the bonds with atoms linked to atom A and :math:`h_{\pi}` is the orbital along the POAV2 :math:`\vec{u}_{\pi}` vector. This class computes indicators related to the POAV2 theory of R.C. Haddon following the demonstrations in the reference [POAV2]_. """ def __init__(self, vertex): r""" POAV1 is defined from the local geometry of an atom at a vertex of the molecule's squeleton. Args: vertex (TrivalentVertex): the trivalent vertex atom """ if isinstance(vertex, TrivalentVertex): self.vertex = vertex elif isinstance(vertex, VertexAtom): self.vertex = TrivalentVertex(vertex.a, vertex.star_a) else: raise TypeError("vertex must be of type VertexAtom or of type" " TrivalentVertex. vertex is {}".format(type(vertex))) self.angles = self.vertex.get_angles(radians=True) @property def matrix(self): """ Compute and return the sigma-orbital hybridization numbers n1, n2 and n3 """ cos_01 = np.cos(self.angles[(0, 1)]) cos_02 = np.cos(self.angles[(0, 2)]) cos_12 = np.cos(self.angles[(1, 2)]) ui = self.vertex.reg_star_a - self.vertex.a M = np.array([ [ui[2, 0] * cos_01 - ui[1, 0] * cos_02, ui[2, 1] * cos_01 - ui[1, 1] * cos_02, ui[2, 2] * cos_01 - ui[1, 2] * cos_02], [ui[0, 0] * cos_12 - ui[2, 0] * cos_01, ui[0, 1] * cos_12 - ui[2, 1] * cos_01, ui[0, 2] * cos_12 - ui[2, 2] * cos_01], [ui[1, 0] * cos_02 - ui[0, 0] * cos_12, ui[1, 1] * cos_02 - ui[0, 1] * cos_12, ui[1, 2] * cos_02 - ui[0, 2] * cos_12] ]) return M @property def u_pi(self): r""" Return vector :math:`u_{\pi}` as the basis of the zero space of the matrix M. This unitary vector support the POAV2 vector. """ u = null_space(self.matrix) rank = u.shape[1] if rank != 1: raise ValueError("The rank of the null space is not equal to 1. " "The POAV2 u_pi vector may not exist. " "rank = %d" % rank) u = u.ravel() # make the direction of u_pi the same as IA (and thus reg_normal) # I is the center of mass of *(A) IA = self.vertex.a - self.vertex.com if np.dot(IA, u) < 0: u *= -1 return u @property def sigma_hyb_nbrs(self): r""" Compute and return the sigma-orbital hybridization numbers n1, n2 and n3. These quantities measure the weight of the p atomic orbitals with respect to s in each of the :math:`h_i` hybrid orbitals along the bonds with atom A. """ cos_01 = np.cos(self.angles[(0, 1)]) cos_02 = np.cos(self.angles[(0, 2)]) cos_12 = np.cos(self.angles[(1, 2)]) n1 = - cos_12 / cos_01 / cos_02 n2 = - cos_02 / cos_12 / cos_01 n3 = - cos_01 / cos_02 / cos_12 return n1, n2, n3 @property def pi_hyb_nbr(self): r""" This quantity measure the weight of the s atomic orbital with respect to the p atomic orbital in the :math:`h_{\pi}` hybrid orbital along the POAV2 vector. """ n = self.sigma_hyb_nbrs w_sigma = sum([1 / (1 + ni) for ni in n]) m = 1 / w_sigma - 1 return m @property def pyrA_r(self): r""" Compute the angles between vector :math:`u_{\pi}` and all the bonds between atom A and atoms B in :math:`\star(A)`. """ ui = self.vertex.reg_star_a - self.vertex.a scal = np.dot(ui, self.u_pi) return np.arccos(scal) @property def pyrA(self): return np.degrees(self.pyrA_r)
[docs] def as_dict(self, radians=True, include_vertex=False, list_obj=False): r""" Return a dict version of all the properties that can be computed with this class. Use `list_obj= True` to obtain a valid JSON object. Args: radians (bool): if True, angles are returned in radians (default) include_vertex (bool): if True, include also vertex data list_obj (bool): if True, numpy arrays are converted into list object (default False) Returns: A dict. """ data = { "pi_hyb_nbr": self.pi_hyb_nbr, "u_pi": self.u_pi.tolist() if list_obj else self.u_pi, "matrix": self.matrix.tolist() if list_obj else self.matrix, } data.update({"n_%d" % i: ni for i, ni in enumerate(self.sigma_hyb_nbrs, 1)}) if include_vertex: data.update(self.vertex.as_dict( radians=radians, list_obj=list_obj)) return data